月地检验验证的是什么
为了验证地面上的重力与地球吸引月球、太阳吸引行星的力是同一性质的力,遵守同样的规律,牛顿做过著名的“月-地”检验。基本想法是:如果重力和星体间的引力是同一性质的力,都与距离的二次方成正比关系,那么月球绕地球做近似圆周运动的向心加速度就应该是地面重力加速度的1/3600,因为月心到地心的距离是地球半径的60倍。牛顿通过计算证明他的想法是正确的。
月球的公转周期T(T=27.3天),月地之间距离R=3.84*10^8米,地面附近的重力加速度g=9.8m/s^2,地球半径R地=6.4*10^6米
月球绕地球做圆周运动的向心力假如是由万有引力提供的,那么它的向心加速度a=GM/R2=g*R地^2/R^2=9.8*(6.4*10^6)^2/(3.84*10^8)^2m/s^2=2.72*10^(-3)m/s^2
(GM=g*R地^2,是黄金代换公式,M是地球质量,G引力常数)
本文由'闾丘翠梅'发布,不代表演示站立场,转载/删除联系作者,如需删除请-> 关于侵权处理说明。